Cara Menyelesaikan SPLDV Dengan Metode Substitusi - Eliminasi

Selamat datang bagi teman - teman di Materi Matematika, Pada kesempatan kali ini kami akan berbagi dengan teman teman di manapun kalian berada, tentang materi pelajaran matematika yang kami beri judul Cara Menyelesaikan SPLDV Dengan Metode Substitusi - Eliminasi, Semoga pembahasan yang kami tulis ini dapat menjadi acuan kalian semua dalam belajar Matematika . materi matematika kelas 12 smp 4 kurikulum 2013 sma 10 semester 1.

hubungan antar garis limit fungsi bunga pertumbuhan dan peluruhan bilangan bulat berpangkat barisan deret bangun datar ruang sisi lengkung bola cos kombinasi contoh soal yang cocok untuk pendekatan scientific open ended tes cerdas cermat statistika counting sin tan paket c cacah model pembelajaran jigsaw pbl cerita tentang cosinus sbmptn dimensi tiga. Berikut Ini Cara Menyelesaikan SPLDV Dengan Metode Substitusi - Eliminasi Selengkapnya

lihat juga


Cara Menyelesaikan SPLDV Dengan Metode Substitusi - Eliminasi

Menyelesaikan SPLDV Dengan Metode Sustitusi - Eliminasi
A. Metode Substitusi
Penyelesaian  menggunakan metode substitusi dilakukan dengan cara menyatakan salah satu variabel dalam bentuk variabel yang lain kemudian nilai variabel tersebut menggantikan variabel yang sama dalam persamaan yang lain. Adapun langkah-langkah yang dapat dilakukan untuk menentukan penyelesaian  dengan menggunakan metode substitusi dapat kamupelajar i dalam contoh soal berikut.
Gunakan metode substitusi untuk menentukan penyelesaian  berikut.
x + y = 6
2x + y = 8
Jawab:
Langkah pertama, tuliskan masing-masing persamaan dalam bentuk persamaan (1) dan (2).
x + y= 6              …(1)
2x+ y = 8            …(2)
Langkah kedua, pilih salah satu persamaan, misalkan persamaan (1). Kemudian,
nyatakan salah satu variabelnya dalam bentuk variabel lainnya.
x + y = 6
      y = 6 – x                   … (3)
Langkah ketiga, nilai variabel y pada persamaan (3) menggantikan variabel y pada
persamaan (2).
       2x + y = 8
2x + 6 – x = 8
        x + 6 = 8
              x = 2                 …(4)
Langkah keempat, nilai x pada persamaan (4) menggantikan variabel x pada salah
satu persamaan awal, misalkan persamaan (1).
x + y = 6
2 + y = 6
    y = 4                        …(5)
Langkah kelima, menentukan penyelesaian  tersebut. Dari uraian diperoleh nilai x = 2 dan y = 4. Jadi, dapat dituliskan Hp = {(2,4)}.

B. Metode Eliminasi

Berbeda dengan metode substitusi yang mengganti variabel, metode eliminasi justru menghilangkan salah satu variabel untuk dapat menentukan nilai variabel yang lain. Dengan demikian, koefisien salah satu variabel yang akan dihilangkan haruslah sama atau dibuat sama. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari contoh soal berikut
Contoh Soal
Gunakan metode eliminasi untuk menentukan penyelesaian  berikut.
   x + y = 6
2x + y = 8
Jawab:
Langkah pertama, menghilangkan salah satu variabel dari  tersebut. Misalkan, variabel y yang akan dihilangkan maka kedua persamaan harus dikurangkan.
  x + y = 6
          2x + y = 8­-
                - x = - 2
                  x = 2
diperoleh nilai x = 2.


Langkah kedua, menghilangkan variabel yang lain dari tersebut, yaitu variabel x. Perhatikan koefisien x pada tersebut tidak sama. Jadi, harus disamakan terlebih dahulu.

x + y = 6   |× 2|        2x + 2y = 12

2x + y = 8 |× 1|        2x + y = 8

Kemudian, kedua persamaan yang telah disetarakan dikurangkan

2x + 2y = 12

2x + y = 8 -

y = 4

diperoleh nilai y = 4

langkah ketiga, menentukan penyelesaian tersebut.

Diperoleh nilai x = 2 dan y = 4. Jadi, HP = {(2,4)}


C. Metode Campuran 
Penyelesaian  menggunakan metode gabungan yang dilakukan dengan cara menggabungkan dua metode yaitu metode eleminasi dan metode substitusi. Adapun langkah-langkah yang dapat dilakukan untuk menentukan penyelesaian  dengan menggunakan metode substitusi dapat kamu pelajari dalam contoh soal berikut
Gunakan metode gabungan untuk menentukan penyelesaian  berikut.
  x + y = 6                   
2x + y = 8                   
jawab :
Langkah pertama, tuliskan masing-masing persamaan dalam bentuk persamaan (1) dan (2)
x + y = 6             …(1)
2x+ y = 8            …(2)
Langkah kedua, eleminasi salah satu variabel, misalnya x, karena x memiliki koefisien yang sama
   x + y =  6
2x y =  8     -
       -x = -2
        x = 2
Langkah ketiga, setelah kita memperoleh nilai salah satu variabel yaitu y, kita substitusikan nilai x = 2 ke salah satu persamaan misalnya ke persamaan (2), sehingga kita peroleh
             2x + y = 8
          2(2) + y = 8
                     y = 8 - 4
      y = 4
Langkah keempat, menentukan penyelesaian  tersebut.
Diperoleh nilai x = 2 dan y = 4. Jadi, HP = {(2,4)}.
Blogger
Disqus

No comments